Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The Mantaro River Basin is one of the most important regions in the central Peruvian Andes in terms of hydropower generation and agricultural production. Contributions to better understanding of the climate and hydrological dynamics are vital for this region and constitute key information to support regional water security and socioeconomic resilience. This study presents eight years of monthly isotopic precipitation information (δ18O, Dxs) collected in the Mantaro River Basin. The isotopic signals were evaluated in terms of moisture sources, including local and regional climatic parameters, to interpret their variability at monthly and interannual timescales. It is proposed that the degree of rainout upstream and the transport history of air masses, also related to regional atmospheric features, are the main factors influencing the δ18O variability. Moreover, significant correlations with precipitation amount and relative humidity imply that local processes in this region of the Andes also exert important control over isotopic variability. Two extreme regional climate events (the 2010 drought and the 2017 coastal El Niño) were evaluated to determine how regional atmospheric circulation affects the rainfall isotope variability. Based on these results, recommendations for hydroclimate studies and paleoclimate reconstructions are proposed in the context of the Mantaro River Basin. This study intends to encourage new applications considering geochemical evidence for hydrological studies over the central Andean region.more » « less
- 
            Abstract. The South American Summer Monsoon (SASM) is the maindriver of regional hydroclimate variability across tropical and subtropicalSouth America. It is best recorded on paleoclimatic timescales by stableoxygen isotope proxies, which are more spatially representative of regionalhydroclimate than proxies for local precipitation alone. Network studies ofproxies that can isolate regional influences lend particular insight intovarious environmental characteristics that modulate hydroclimate, such asatmospheric circulation variability and changes in the regional energybudget as well as understanding the climate system sensitivity to externalforcings. We extract the coherent modes of variability of the SASM over thelast millennium (LM) using a Monte Carlo empirical orthogonal function(MCEOF) decomposition of 14 δ18O proxy records and compare themwith modes decomposed from isotope-enabled climate model data. The twoleading modes reflect the isotopic variability associated with (1) thermodynamic changes driving the upper-tropospheric monsoon circulation(Bolivian High–Nordeste Low waveguide) and (2) the latitudinaldisplacement of the South Atlantic Convergence Zone (SACZ). The spatialcharacteristics of these modes appear to be robust features of the LMhydroclimate over South America and are reproduced both in the proxy dataand in isotope-enabled climate models, regardless of the nature of themodel-imposed external forcing. The proxy data document that the SASM wascharacterized by considerable temporal variability throughout the LM, withsignificant departures from the mean state during both the Medieval ClimateAnomaly (MCA) and the Little Ice Age (LIA). Model analyses during theseperiods suggest that the local isotopic composition of precipitation isprimarily a reflection of upstream rainout processes associated with monsoonconvection. Model and proxy data both point to an intensification of themonsoon during the LIA over the central and western parts of tropical SouthAmerica and indicate a displacement of the South Atlantic Convergence Zone(SACZ) to the southwest. These centennial-scale changes in monsoon intensityover the LM are underestimated in climate models, complicating theattribution of changes on these timescales to specific forcings and pointingtoward areas of important model development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
